2 research outputs found

    Robotic equipment carrying RN detectors: requirements and capabilities for testing

    Get PDF
    77 pags., 32 figs., 5 tabs.-- ERNCIP Radiological and Nuclear Threats to Critical Infrastructure Thematic Group . -- This publication is a Technical report by the Joint Research Centre (JRC) . -- JRC128728 . -- EUR 31044 ENThe research leading to these results has received funding from the European Union as part of the European Reference Network for Critical Infrastructure Protection (ERNCIP) projec

    Lab on a Chip for the Colorimetric Determination of Nitrite in Processed Meat Products in the Jordanian Market

    No full text
    Nitrite and Nitrate have been used extensively as additives in various meat products to enhance flavor, color, and to preserve the meat from the bacterial growth. High concentrations of nitrite can threat human health since several studies in the literature claim that nitrite is associated with cancer incidences, leukemia, and brain tumors. Therefore, it is vital to measure the nitrite concentrations in processed meat products. In this study, an in-lab miniaturized photometric detection system is fabricated to inspect the nitrite concentration in processed meat products in Jordan. The analytical performance of nitrite detection is evaluated based on three key statistical parameters; linearity, limit of detection, and limit of quantitation. Respectively, for the fabricated system, the three values are found to be equal to 0.995, 1.24 × 10−2 ppm, and 4.12 × 10−2 ppm. Adherence to Beer’s law is found over the investigated range from 2.63 ppm to 96.0 ppm. The developed system is utilized for photometric detection of nitrite in processed meat products available in the Jordanian market like pastrami, salami, and corned beef. In all of the analyzed samples, the nitrite content is found to be lower than 150 ppm, which represents the maximum allowable nitrite limit
    corecore